Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Vitam Horm ; 124: 221-295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408800

RESUMO

Stress is part of our daily lives and good health in the modern world is offset by unhealthy lifestyle factors, including the deleterious consequences of stress and associated pathologies. Repeated and/or prolonged stress may disrupt the body homeostasis and thus threatens our lives. Adaptive processes that allow the organism to adapt to new environmental conditions and maintain its homeostasis are therefore crucial. The adrenal glands are major endocrine/neuroendocrine organs involved in the adaptive response of the body facing stressful situations. Upon stress episodes and in response to activation of the sympathetic nervous system, the first adrenal cells to be activated are the neuroendocrine chromaffin cells located in the medullary tissue of the adrenal gland. By releasing catecholamines (mainly epinephrine and to a lesser extent norepinephrine), adrenal chromaffin cells actively contribute to the development of adaptive mechanisms, in particular targeting the cardiovascular system and leading to appropriate adjustments of blood pressure and heart rate, as well as energy metabolism. Specifically, this chapter covers the current knowledge as to how the adrenal medullary tissue remodels in response to stress episodes, with special attention paid to chromaffin cell stimulus-secretion coupling. Adrenal stimulus-secretion coupling encompasses various elements taking place at both the molecular/cellular and tissular levels. Here, I focus on stress-driven changes in catecholamine biosynthesis, chromaffin cell excitability, synaptic neurotransmission and gap junctional communication. These signaling pathways undergo a collective and finely-tuned remodeling, contributing to appropriate catecholamine secretion and maintenance of body homeostasis in response to stress.


Assuntos
Medula Suprarrenal , Células Cromafins , Humanos , Medula Suprarrenal/metabolismo , Células Cromafins/metabolismo , Transmissão Sináptica/fisiologia , Catecolaminas/metabolismo , Junções Comunicantes/metabolismo
3.
Physiol Rev ; 104(1): 399-472, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37615954

RESUMO

Cell excitability and its modulation by hormones and neurotransmitters involve the concerted action of a large repertoire of membrane proteins, especially ion channels. Unique complements of coexpressed ion channels are exquisitely balanced against each other in different excitable cell types, establishing distinct electrical properties that are tailored for diverse physiological contributions, and dysfunction of any component may induce a disease state. A crucial parameter controlling cell excitability is the resting membrane potential (RMP) set by extra- and intracellular concentrations of ions, mainly Na+, K+, and Cl-, and their passive permeation across the cell membrane through leak ion channels. Indeed, dysregulation of RMP causes significant effects on cellular excitability. This review describes the molecular and physiological properties of the Na+ leak channel NALCN, which associates with its accessory subunits UNC-79, UNC-80, and NLF-1/FAM155 to conduct depolarizing background Na+ currents in various excitable cell types, especially neurons. Studies of animal models clearly demonstrate that NALCN contributes to fundamental physiological processes in the nervous system including the control of respiratory rhythm, circadian rhythm, sleep, and locomotor behavior. Furthermore, dysfunction of NALCN and its subunits is associated with severe pathological states in humans. The critical involvement of NALCN in physiology is now well established, but its study has been hampered by the lack of specific drugs that can block or agonize NALCN currents in vitro and in vivo. Molecular tools and animal models are now available to accelerate our understanding of how NALCN contributes to key physiological functions and the development of novel therapies for NALCN channelopathies.


Assuntos
Canais Iônicos , Canais de Sódio , Humanos , Animais , Canais Iônicos/metabolismo , Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Sódio/metabolismo , Proteínas de Membrana
4.
Methods Mol Biol ; 2565: 113-127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36205891

RESUMO

Because catecholamines secretion mainly relies on the excitable nature of adrenal chromaffin cells, monitoring their electrical activity is an essential step in assessing the adrenal medullary tissue function. The difficult access to the gland in vivo allows only population activity to be recorded in this condition. In vitro preparations allow recordings of spontaneous or evoked activity from single or multiple cells, depending on the biological samples used (dissociated chromaffin cells versus adrenal tissue preparations). In this chapter, I provide a detailed description of the techniques used for electrophysiological recordings in rodent chromaffin cells in acute adrenal slices, using the patch-clamp technique. This methodology allows preservation of the tissue integrity and detection of action potentials, synaptic activity, and secretory events; it is thus suitable for the study of adrenomedullary activity-secretion coupling.


Assuntos
Medula Suprarrenal , Células Cromafins , Potenciais de Ação/fisiologia , Glândulas Suprarrenais , Catecolaminas , Técnicas de Patch-Clamp
5.
Compr Physiol ; 12(2): 3371-3415, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35578964

RESUMO

Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.


Assuntos
Glândulas Endócrinas , Hormônios/fisiologia , Humanos , Sistemas Neurossecretores/fisiologia , Reprodução
6.
Front Neuroendocrinol ; 63: 100947, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34592201

RESUMO

In endocrine/neuroendocrine tissues, excitability of secretory cells is patterned by the repertoire of ion channels and there is clear evidence that extracellular sodium (Na+) ions contribute to hormone secretion. While voltage-gated channels involved in action potential generation are well-described, the background 'leak' channels operating near the resting membrane potential are much less known, and in particular the channels supporting a background entry of Na+ ions. These background Na+ currents (called here 'INab') have the ability to modulate the resting membrane potential and subsequently affect action potential firing. Here we compile and analyze the data collected from three endocrine/neuroendocrine tissues: the anterior pituitary gland, the adrenal medulla and the endocrine pancreas. We also model how INab can be functionally involved in cellular excitability. Finally, towards deciphering the physiological role of INab in endocrine/neuroendocrine cells, its implication in hormone release is also discussed.


Assuntos
Células Neuroendócrinas , Sódio , Potenciais de Ação , Hormônios , Íons
7.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065933

RESUMO

Neonicotinoid insecticides are nicotine-derived molecules which exert acute neurotoxic effects over the insect central nervous system by activating nicotinic acetylcholine receptors (nAChRs). However, these receptors are also present in the mammalian central and peripheral nervous system, where the effects of neonicotinoids are faintly known. In mammals, cholinergic synapses are crucial for the control of vascular tone, blood pressure and skeletal muscle contraction. We therefore hypothesized that neonicotinoids could affect cholinergic networks in mammals and sought to highlight functional consequences of acute intoxication in rats with sub-lethal concentrations of the highly used acetamiprid (ACE) and clothianidin (CLO). In this view, we characterized their electrophysiological effects on rat α3ß4 nAChRs, knowing that it is predominantly expressed in ganglia of the vegetative nervous system and the adrenal medulla, which initiates catecholamine secretion. Both molecules exhibited a weak agonist effect on α3ß4 receptors. Accordingly, their influence on epinephrine secretion from rat adrenal glands was also weak at 100 µM, but it was stronger at 500 µM. Challenging ACE or CLO together with nicotine (NIC) ended up with paradoxical effects on secretion. In addition, we measured the rat arterial blood pressure (ABP) in vivo by arterial catheterization. As expected, NIC induced a significant increase in ABP. ACE and CLO did not affect the ABP in the same conditions. However, simultaneous exposure of rats to both NIC and ACE/CLO promoted an increase of ABP and induced a biphasic response. Modeling the interaction of ACE or CLO on α3ß4 nAChR is consistent with a binding site located in the agonist pocket of the receptor. We present a transversal experimental approach of mammal intoxication with neonicotinoids at different scales, including in vitro, ex vivo, in vivo and in silico. It paves the way of the acute and chronic toxicity for this class of insecticides on mammalian organisms.


Assuntos
Epinefrina/metabolismo , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nicotina/toxicidade , Receptores Nicotínicos/metabolismo , Medula Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Agonismo Parcial de Drogas , Gânglios/efeitos dos fármacos , Gânglios/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidinas/toxicidade , Masculino , Ratos , Tiazóis/toxicidade , Testes de Toxicidade Subaguda
8.
FASEB J ; 35(5): e21400, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33793981

RESUMO

Anterior pituitary endocrine cells that release hormones such as growth hormone and prolactin are excitable and fire action potentials. In these cells, several studies previously showed that extracellular sodium (Na+ ) removal resulted in a negative shift of the resting membrane potential (RMP) and a subsequent inhibition of the spontaneous firing of action potentials, suggesting the contribution of a Na+ background conductance. Here, we show that the Na+ leak channel NALCN conducts a Ca2+ - Gd3+ -sensitive and TTX-resistant Na+ background conductance in the GH3 cell line, a cell model of pituitary endocrine cells. NALCN knockdown hyperpolarized the RMP, altered GH3 cell electrical properties and inhibited prolactin secretion. Conversely, the overexpression of NALCN depolarized the RMP, also reshaping the electrical properties of GH3 cells. Overall, our results indicate that NALCN is functional in GH3 cells and involved in endocrine cell excitability as well as in hormone secretion. Indeed, the GH3 cell line suitably models native pituitary cells that display a similar Na+ background conductance and appears as a proper cellular model to study the role of NALCN in cellular excitability.


Assuntos
Potenciais de Ação , Células Endócrinas/fisiologia , Canais Iônicos/metabolismo , Potenciais da Membrana , Proteínas de Membrana/metabolismo , Hipófise/fisiologia , Sódio/metabolismo , Animais , Células Endócrinas/citologia , Hipófise/citologia , Ratos
9.
J Physiol ; 599(6): 1855-1883, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450050

RESUMO

KEY POINTS: Mouse chromaffin cells in acute adrenal slices exhibit two distinct spiking patterns, a repetitive mode and a bursting mode. A sodium background conductance operates at rest as demonstrated by the membrane hyperpolarization evoked by a low Na+ -containing extracellular saline. This sodium background current is insensitive to TTX, is not blocked by Cs+ ions and displays a linear I-V relationship at potentials close to chromaffin cell resting potential. Its properties are reminiscent of those of the sodium leak channel NALCN. In the adrenal gland, Nalcn mRNA is selectively expressed in chromaffin cells. The study fosters our understanding of how the spiking pattern of chromaffin cells is regulated and adds a sodium background conductance to the list of players involved in the stimulus-secretion coupling of the adrenomedullary tissue. ABSTRACT: Chromaffin cells (CCs) are the master neuroendocrine units for the secretory function of the adrenal medulla and a finely-tuned regulation of their electrical activity is required for appropriate catecholamine secretion in response to the organismal demand. Here, we aim at deciphering how the spiking pattern of mouse CCs is regulated by the ion conductances operating near the resting membrane potential (RMP). At RMP, mouse CCs display a composite firing pattern, alternating between active periods composed of action potentials spiking with a regular or a bursting mode, and silent periods. RMP is sensitive to changes in extracellular sodium concentration, and a low Na+ -containing saline hyperpolarizes the membrane, regardless of the discharge pattern. This RMP drive reflects the contribution of a depolarizing conductance, which is (i) not blocked by tetrodotoxin or caesium, (ii) displays a linear I-V relationship between -110 and -40 mV, and (iii) is carried by cations with a conductance sequence gNa  > gK  > gCs . These biophysical attributes, together with the expression of the sodium-leak channel Nalcn transcript in CCs, state credible the contribution of NALCN. This inaugural report opens new research routes in the field of CC stimulus-secretion coupling, and extends the inventory of tissues in which NALCN is expressed to neuroendocrine glands.


Assuntos
Medula Suprarrenal , Células Cromafins , Potenciais de Ação , Animais , Íons , Camundongos , Sódio
10.
Nat Commun ; 11(1): 4855, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978390

RESUMO

The atypical chemokine receptor 3 (ACKR3) plays a pivotal role in directing the migration of various cellular populations and its over-expression in tumors promotes cell proliferation and invasiveness. The intracellular signaling pathways transducing ACKR3-dependent effects remain poorly characterized, an issue we addressed by identifying the interactome of ACKR3. Here, we report that recombinant ACKR3 expressed in HEK293T cells recruits the gap junction protein Connexin 43 (Cx43). Cx43 and ACKR3 are co-expressed in mouse brain astrocytes and human glioblastoma cells and form a complex in embryonic mouse brain. Functional in vitro studies show enhanced ACKR3 interaction with Cx43 upon ACKR3 agonist stimulation. Furthermore, ACKR3 activation promotes ß-arrestin2- and dynamin-dependent Cx43 internalization to inhibit gap junctional intercellular communication in primary astrocytes. These results demonstrate a functional link between ACKR3 and gap junctions that might be of pathophysiological relevance.


Assuntos
Astrócitos/metabolismo , Comunicação Celular/fisiologia , Conexina 43/metabolismo , Junções Comunicantes/patologia , Receptores CXCR/metabolismo , Animais , Proliferação de Células , Conexina 43/efeitos dos fármacos , Conexinas/metabolismo , Técnicas de Introdução de Genes , Glioblastoma/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Domínios e Motivos de Interação entre Proteínas , Receptores CXCR/agonistas , Receptores CXCR/genética , Transdução de Sinais/fisiologia
11.
Psychoneuroendocrinology ; 119: 104750, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32569990

RESUMO

BACKGROUND AND AIMS: The gut microbiota produces metabolites that are an integral part of the metabolome and, as such, of the host physiology. Changes in gut microbiota metabolism could therefore contribute to pathophysiological processes. We showed previously that a chronic and moderate overproduction of indole from tryptophan in male individuals of the highly stress-sensitive F344 rat strain induced anxiety-like and helplessness behaviors. The aim of the present study was to extend the scope of these findings by investigating whether emotional behaviors of male mice that are moderately stress-sensitive but chronically exposed to environmental stressors would also be affected by indole. METHODS: We colonized germ-free male C3H/HeN mice with a wild-type indole-producing Escherichia coli strain, or with the non-indole producing mutant. Gnotobiotic mice were subjected to an unpredictable chronic mild stress procedure, then to a set of tests aimed at assessing anxiety-like (novelty and elevated plus maze tests) and depression-like behaviors (coat state, splash, nesting, tail suspension and sucrose tests). Results of the individual tests were aggregated into a common z-score to estimate the overall emotional response to chronic mild stress and chronic indole production. We also carried out biochemical and molecular analyses in gut mucosa, plasma, brain hippocampus and striatum, and adrenal glands, to examine biological correlates that are usually associated with stress, anxiety and depression. RESULTS: Chronic mild stress caused coat state degradation and anhedonia in both indole-producing and non-indole producing mice, but it did not influence behaviors in the other tests. Chronic indole production did not influence mice behavior when tests were considered individually, but it increased the overall emotionality z-score, specifically in mice under chronic mild stress. Interestingly, in the same mice, indole induced a dramatic increase of the expression of the adrenomedullary Pnmt gene, which is involved in catecholamine biosynthesis. By contrast, systemic tryptophan bioavailability, brain serotonin and dopamine levels and turnover, as well as expression of gut and brain genes involved in cytokine production and tryptophan metabolism along the serotonin and kynurenine pathways, remained similar in all mice. CONCLUSIONS: Chronic indole production by the gut microbiota increased the vulnerability of male mice to the adverse effects of chronic mild stress on emotional behaviors. It also targeted catecholamine biosynthetic pathway of the adrenal medulla, which plays a pivotal role in body's physiological adaptation to stressful events. Future studies will aim to investigate the action mechanisms responsible for these effects.


Assuntos
Medula Suprarrenal/efeitos dos fármacos , Emoções/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Indóis/farmacologia , Estresse Psicológico , Medula Suprarrenal/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Doença Crônica , Indóis/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Estresse Psicológico/metabolismo , Estresse Psicológico/microbiologia , Estresse Psicológico/patologia , Estresse Psicológico/psicologia , Fatores de Tempo
12.
IUBMB Life ; 72(4): 553-567, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31301221

RESUMO

Synaptic neurotransmission at the splanchnic nerve-chromaffin cell synapse is a chief element of the stimulus-secretion coupling in the adrenal medullary tissue, managing and regulating the secretion of catecholamines. Making the state of play more intricate than initially envisioned, the synaptic vesicles of nerve terminals innervating the medulla contain various compounds, including various neurotransmitters and neuropeptides. Under basal conditions associated with a low splanchnic nerve discharge rate, neurotransmission is ensured by the synaptic release of the primary neurotransmitter acetylcholine (ACh). Under sustained and repetitive stimulations of the splanchnic nerve, as triggered in response to stressors, the synaptic release of neuropeptides, such as the pituitary adenylate cyclase-activating polypeptide PACAP, supplants ACh release. The anatomical and functional changes that occur presynaptically at the preganglionic splanchnic nerve, combined with changes occurring postsynaptically at nicotinic acetylcholine receptors (nAChRs), confer the adrenomedullary synapses a solid and persistent aptitude to functional remodeling, from birth to aging. The present review focuses on the composite cholinergic and noncholinergic nature of neurotransmission occurring at the splanchnic nerve-chromaffin cell synapse and its remodeling in response to physiological or pathological stimuli.


Assuntos
Medula Suprarrenal/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Acetilcolina/metabolismo , Medula Suprarrenal/crescimento & desenvolvimento , Animais , Células Cromafins/metabolismo , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Nervos Esplâncnicos/metabolismo
13.
Pharmacol Res ; 145: 104250, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31059790

RESUMO

Etifoxine (EFX) is a non-benzodiazepine psychoactive drug which exhibits anxiolytic effects through a dual mechanism, by directly binding to GABAA receptors (GABAARs) and to the mitochondrial 18-kDa translocator protein, resulting in the potentiation of the GABAergic function. The ß subunit subtype plays a key role in the EFX-GABAAR interaction, however this does not explain the anxiolytic effects of this drug. Here, we combined behavioral and electrophysiological experiments to challenge the role of the GABAAR α subunit in the EFX mode of action. After single administrations of anxiolytic doses (25-50 mg/kg, intraperitoneal), EFX did not induce any neurological nor locomotor impairments, unlike the benzodiazepine bromazepam (0.5-1 mg/kg, intraperitoneal). We established the EFX pharmacological profile on heteropentameric GABAARs constructed with α1 to α6 subunit expressed in Xenopus oocyte. Unlike what is known for benzodiazepines, neither the γ nor δ subunits influenced EFX-mediated potentiation of GABA-evoked currents. EFX acted first as a partial agonist on α2ß3γ2S, α3ß3γ2S, α6ß3γ2S and α6ß3δ GABAARs, but not on α1ß3γ2S, α4ß3γ2S, α4ß3δ nor α5ß3γ2S GABAARs. Moreover, EFX exhibited much higher positive allosteric modulation towards α2ß3γ2S, α3ß3γ2S and α6ß3γ2S than for α1ß3γ2S, α4ß3γ2S and α5ß3γ2S GABAARs. At 20 µM, corresponding to brain concentration at anxiolytic doses, EFX increased GABA potency to the highest extent for α3ß3γ2S GABAARs. We built a docking model of EFX on α3ß3γ2S GABAARs, which is consistent with a binding site located between α and ß subunits in the extracellular domain. In conclusion, EFX preferentially potentiates α2ß3γ2S and α3ß3γ2S GABAARs, which might support its advantageous anxiolytic/sedative balance.


Assuntos
Ansiolíticos/farmacologia , Oxazinas/farmacologia , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Animais , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Moleculares , Oócitos/fisiologia , Oxazinas/uso terapêutico , Subunidades Proteicas/genética , Desempenho Psicomotor/efeitos dos fármacos , Receptores de GABA-A/genética , Xenopus laevis
14.
Epilepsia ; 59(1): 123-134, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29125184

RESUMO

OBJECTIVE: Available evidence points to a role of cytochrome P450 (Cyp) drug biotransformation enzymes in central nervous system diseases, including epilepsy. Deviations in drug pharmacokinetic profiles may impact therapeutic outcomes. Here, we ask whether spontaneous recurrent seizure (SRS) activity is sufficient to modulate the expression of major Cyp enzymes in the liver and brain. METHODS: Unilateral intrahippocampal (IH) kainic acid (KA) injections were used to elicit nonconvulsive status epilepticus (SE), epileptogenesis, and SRS, as monitored by video-electroencephalography. Intraperitoneal (IP) KA injection was used to trigger generalized tonic-clonic SE. KA-injected mice and sham controls were sacrificed at 24-72 hours and 1 week post-SE (IH or IP KA), and during the chronic stage (SRS; 6 weeks post-IH KA). Liver and brain tissues were processed for histology, real-time quantitative polymerase chain reaction, Western blot, or microsomal enzymatic assay. Cyp2e1, Cyp3a13, glial fibrillary acidic protein (GFAP), IBA1, xenobiotic nuclear receptors nr1i2 (PXR), nr1i3 (CAR) and nr3c1 (glucocorticoid receptor [GR]) expression was examined. Serum samples were obtained to assay corticosterone levels, a GR activator. RESULTS: A significant increase of Cyp3a13 and Cyp2e1 transcript level and protein expression was found in the liver and hippocampi during SRS, as compared to control mice. In the ipsilateral hippocampus, Cyp2e1 and Cyp3a protein upregulation during SRS positively correlated to GFAP expression. GFAP+ , and not IBA1+ , cells colocalized with Cyp2e1 or Cyp3a expression. In the liver, a trend increase in Cyp3a microsomal activity was found during SRS as compared to control mice. The transcript levels of the Cyp upstream regulators GR, xenobiotic nr1i2, and nr1i3 receptors were unchanged at SRS. Corticosterone levels, a GR ligand, were increased in the blood post-SE. SIGNIFICANCE: SRS modifies Cyp expression in the liver and the hippocampus. Nuclear receptors or inflammatory pathways are candidate mechanisms of Cyp regulation during seizures.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hipocampo/enzimologia , Fígado/enzimologia , Estado Epiléptico/enzimologia , Estado Epiléptico/patologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Receptor Constitutivo de Androstano , Corticosterona/sangue , Sistema Enzimático do Citocromo P-450/genética , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Agonistas de Aminoácidos Excitatórios/toxicidade , Lateralidade Funcional/efeitos dos fármacos , Lateralidade Funcional/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/efeitos dos fármacos , Ácido Caínico/toxicidade , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Recidiva , Estatísticas não Paramétricas , Estado Epiléptico/sangue , Estado Epiléptico/induzido quimicamente , Fatores de Tempo
15.
Pflugers Arch ; 470(1): 89-96, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28735418

RESUMO

From birth to death, catecholamine secretion undergoes continuous adjustments, allowing the organism to adapt to homeostasis changes. To cope with these stressful conditions, the neuroendocrine cells of the adrenal medulla play an immediate and crucial role. Chromaffin cell-driven catecholamine release is chiefly controlled by a neurogenic command that arises from the sympathetic nervous system, which releases acetylcholine at the splanchnic nerve terminal-chromaffin cell synapses. In addition to receiving several synaptic inputs individually, chromaffin cells are coupled by gap junctions. This raises interesting questions about the usefulness and the role of the gap junctional coupling within the chromaffin tissue, considering that secretory function is efficiently completed by the neurogenic pathway. The findings that gap junctions contribute to catecholamine secretion, both ex vivo and in vivo, provide some early answers, but their involvement in other cellular functions still remains unexplored. This review summarizes the molecular and physiological evidence that gap junctions can act either as an accelerator or a brake of stimulus-secretion coupling and discusses this functional plasticity in the context of specific needs in circulating catecholamine levels. It introduces the concept of gap junctions as sympathetic activity sensors and guardians of the functional integrity of the chromaffin tissue.


Assuntos
Medula Suprarrenal/metabolismo , Comunicação Autócrina , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Junções Comunicantes/metabolismo , Estresse Fisiológico , Medula Suprarrenal/citologia , Medula Suprarrenal/fisiologia , Animais , Células Cromafins/fisiologia , Humanos
16.
Artigo em Inglês | MEDLINE | ID: mdl-28993760

RESUMO

Catecholamine (CA) secretion from the adrenal medullary tissue is a key step of the adaptive response triggered by an organism to cope with stress. Whereas molecular and cellular secretory processes have been extensively studied at the single chromaffin cell level, data available for the whole gland level are much scarcer. We tackled this issue in rat by developing an easy to implement experimental strategy combining the adrenal acute slice supernatant collection with a high-performance liquid chromatography-based epinephrine and norepinephrine (NE) assay. This technique affords a convenient method for measuring basal and stimulated CA release from single acute slices, allowing thus to individually address the secretory function of the left and right glands. Our data point that the two glands are equally competent to secrete epinephrine and NE, exhibiting an equivalent epinephrine:NE ratio, both at rest and in response to a cholinergic stimulation. Nicotine is, however, more efficient than acetylcholine to evoke NE release. A pharmacological challenge with hexamethonium, an α3-containing nicotinic acetylcholine receptor antagonist, disclosed that epinephrine- and NE-secreting chromaffin cells distinctly expressed α3 nicotinic receptors, with a dominant contribution in NE cells. As such, beyond the novelty of CA assays from acute slice supernatants, our study contributes at refining the secretory behavior of the rat adrenal medullary tissue, and opens new perspectives for monitoring the release of other hormones and transmitters, especially those involved in the stress response.

17.
Insect Biochem Mol Biol ; 66: 136-44, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26524962

RESUMO

In Drosophila melanogaster, the functions of voltage-gated sodium (Nav) channels are modulated by TipE and its orthologs. Here, we describe a novel TipE homolog of the American cockroach, Periplaneta americana, called PaTipE. Like DmTipE, PaTipE mRNAs are ubiquitously expressed. Surprisingly, PaTipE mRNA was undetectable in neurosecretory cells identified as dorsal unpaired median neurons. Phylogenetic analysis placed this new sequence in TipE clade, indicating an independent evolution from a common ancestor. Contrary to previous reports, our data indicate that the auxiliary subunits of insect Nav channels are very distant from the mammalian BKCa auxiliary subunits. To decipher the functional roles of PaTipE, we characterized the gating properties of DmNav1-1 channels co-expressed with DmTipE or PaTipE, in Xenopus oocytes. Compared to DmTipE, PaTipE increased Na(+) currents by a 4.2-fold. The voltage-dependence of steady-state fast inactivation of DmNav1-1/PaTipE channels was shifted by 5.8 mV to more negative potentials than that of DmNav1-1/DmTipE channels. DmNav1-1/PaTipE channels recovered 3.2-fold slower from the fast-inactivated state than DmNav1-1/DmTipE channels. In conclusion, this study supports that the insect Nav auxiliary subunits share functional features with their mammalian counterparts, although structurally and phylogenetically distant.


Assuntos
Proteínas de Insetos/metabolismo , Proteínas de Membrana/metabolismo , Periplaneta/metabolismo , Canais de Sódio/metabolismo , Animais , Fenômenos Eletrofisiológicos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Ativação do Canal Iônico , Potenciais da Membrana , Proteínas de Membrana/química , Oócitos , Periplaneta/química , Periplaneta/genética , Filogenia , Canais de Sódio/química , Canais de Sódio/genética , Xenopus
18.
Cell Mol Life Sci ; 72(15): 2911-28, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26084873

RESUMO

To ensure appropriate secretion in response to demand, (neuro)endocrine tissues liberate massive quantities of hormones, which act to coordinate and synchronize biological signals in distant secretory and nonsecretory cell populations. Intercellular communication plays a central role in this control. With regard to molecular identity, junctional cell-cell communication is supported by connexin-based gap junctions. In addition, connexin hemichannels, the structural precursors of gap junctions, as well as pannexin channels have recently emerged as possible modulators of the secretory process. This review focuses on the expression of connexins and pannexins in various (neuro)endocrine tissues, including the adrenal cortex and medulla, the anterior pituitary, the endocrine hypothalamus and the pineal, thyroid and parathyroid glands. Upon a physiological or pathological stimulus, junctional intercellular coupling can be acutely modulated or persistently remodeled, thus offering multiple regulatory possibilities. The functional roles of gap junction-mediated intercellular communication in endocrine physiology as well as the involvement of connexin/pannexin-related hemichannels are also discussed.


Assuntos
Conexinas/metabolismo , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/fisiologia , Animais , Comunicação Celular/fisiologia , Junções Comunicantes/metabolismo , Junções Comunicantes/fisiologia , Humanos
19.
J Physiol ; 593(4): 905-27, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25620605

RESUMO

KEY POINTS: Mouse chromaffin cells (MCCs) of the adrenal medulla possess fast-inactivating Nav channels whose availability alters spontaneous action potential firing patterns and the Ca(2+)-dependent secretion of catecholamines. Here, we report MCCs expressing large densities of neuronal fast-inactivating Nav1.3 and Nav1.7 channels that carry little or no subthreshold pacemaker currents and can be slowly inactivated by 50% upon slight membrane depolarization. Reducing Nav1.3/Nav1.7 availability by tetrodotoxin or by sustained depolarization near rest leads to a switch from tonic to burst-firing patterns that give rise to elevated Ca(2+)-influx and increased catecholamine release. Spontaneous burst firing is also evident in a small percentage of control MCCs. Our results establish that burst firing comprises an intrinsic firing mode of MCCs that boosts their output. This occurs particularly when Nav channel availability is reduced by sustained splanchnic nerve stimulation or prolonged cell depolarizations induced by acidosis, hyperkalaemia and increased muscarine levels. ABSTRACT: Action potential (AP) firing in mouse chromaffin cells (MCCs) is mainly sustained by Cav1.3 L-type channels that drive BK and SK currents and regulate the pacemaking cycle. As secretory units, CCs optimally recruit Ca(2+) channels when stimulated, a process potentially dependent on the modulation of the AP waveform. Our previous work has shown that a critical determinant of AP shape is voltage-gated sodium channel (Nav) channel availability. Here, we studied the contribution of Nav channels to firing patterns and AP shapes at rest (-50 mV) and upon stimulation (-40 mV). Using quantitative RT-PCR and immunoblotting, we show that MCCs mainly express tetrodotoxin (TTX)-sensitive, fast-inactivating Nav1.3 and Nav1.7 channels that carry little or no Na(+) current during slow ramp depolarizations. Time constants and the percentage of recovery from fast inactivation and slow entry into closed-state inactivation are similar to that of brain Nav1.3 and Nav1.7 channels. The fraction of available Nav channels is reduced by half after 10 mV depolarization from -50 to -40 mV. This leads to low amplitude spikes and a reduction in repolarizing K(+) currents inverting the net current from outward to inward during the after-hyperpolarization. When Nav channel availability is reduced by up to 20% of total, either by TTX block or steady depolarization, a switch from tonic to burst firing is observed. The spontaneous occurrence of high frequency bursts is rare under control conditions (14% of cells) but leads to major Ca(2+)-entry and increased catecholamine release. Thus, Nav1.3/Nav1.7 channel availability sets the AP shape, burst-firing initiation and regulates catecholamine secretion in MCCs. Nav channel inactivation becomes important during periods of high activity, mimicking stress responses.


Assuntos
Células Cromafins/fisiologia , Canais de Sódio Disparados por Voltagem/fisiologia , Potenciais de Ação , Medula Suprarrenal/fisiologia , Animais , Catecolaminas/metabolismo , Células Cromafins/efeitos dos fármacos , Células Cromafins/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
20.
Cell ; 157(7): 1565-76, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24949969

RESUMO

Mycobacterium ulcerans, the etiological agent of Buruli ulcer, causes extensive skin lesions, which despite their severity are not accompanied by pain. It was previously thought that this remarkable analgesia is ensured by direct nerve cell destruction. We demonstrate here that M. ulcerans-induced hypoesthesia is instead achieved through a specific neurological pathway triggered by the secreted mycobacterial polyketide mycolactone. We decipher this pathway at the molecular level, showing that mycolactone elicits signaling through type 2 angiotensin II receptors (AT2Rs), leading to potassium-dependent hyperpolarization of neurons. We further validate the physiological relevance of this mechanism with in vivo studies of pain sensitivity in mice infected with M. ulcerans, following the disruption of the identified pathway. Our findings shed new light on molecular mechanisms evolved by natural systems for the induction of very effective analgesia, opening up the prospect of new families of analgesics derived from such systems.


Assuntos
Angiotensinas/metabolismo , Úlcera de Buruli/patologia , Macrolídeos/isolamento & purificação , Mycobacterium ulcerans , Analgésicos/isolamento & purificação , Animais , Úlcera de Buruli/metabolismo , Úlcera de Buruli/microbiologia , Modelos Animais de Doenças , Edema/microbiologia , Humanos , Hipestesia/induzido quimicamente , Macrolídeos/química , Macrolídeos/metabolismo , Camundongos , Neurônios/metabolismo , Canais de Potássio/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...